
CS 787: Advanced Algorithms

Lecture 15: Compositions and Partitions

Instructor: Eric Bach Scribe: Siddharth Barman

DRAFT

We continue our discussion on enumeration of combinatorial objects. In this lecture we introduce
the concept of compositions and partitions. We also give some counting arguments and formulas
for number of partitions finally we describe an algorithm for enumeration of all possible partitions.

1 Composition

A composition of m into l parts is a sum m = x1 + x2 + ... + xl, where xis are integers ≥ 0 and
xi ≤ n. Note that the ordering of xis matter i.e. in our scheme of things given m = 4 and l = 2,
4 = 3 + 1 and 4 = 1 + 3 are two different compositions. The key in understanding compositions
is to realize that a k subset of n determines a composition of n− k into k + 1 parts (see Figure 1
). Distances between marked points sum to n − k and including the end points we have k + 1 of
them. To enumerate composition of m, l parts enumerate (l − 1) subsets of m + l − 1.

X X X X

1 1

n

4= 1 + 1 + 0 + 2 + 0

0 2 0

Xs at position 2,4,5 and 8

Figure 1: Composition as subsets

Corollary 1. Number of l length compositions of m are
(
m+l−1

l−1

)
.

2 Partition

Definition 1. A partition of n is a sum such that n = x1 + x2 + x3 + ... + xk, xi ≥ 1 and xis are
integers such that x1 ≥ x2... ≥ xk.

The important point here is that k can vary.
Example: So for n = 5 we have the following 7 partitions.
5 = 5 ; 5 = 4 + 1 ; 5 = 3 + 2;
5 = 3 + 1 + 1; 5 = 2 + 1 + 1 + 1 ;

1

5 = 2 + 2 + 1 and 5 = 1 + 1 + 1 + 1 + 1. �

Definition 2. P (n) = Number of partitions of n.

As shown above P(5)=7. A visual aid in understanding partitions is provided by Ferrers
Diagram. In Ferrers Diagrams integer k is represented by a tower made of k dots. The diagram
suggests a number of combinatorial theorems for partitions. A lot of combinatorial relations are
proved using reasoning such as rotation of diagrams (See Figure 2).

m

m

Rotate

Figure 2: Ferrers Diagram

For P (n) we also have the following generating function,∑
n≥0

P (n)zn =
∏
i≥1

1
1− zi

To see why this holds we can expand the terms on the right hand side, 1
1−z = 1+z1.1+z2.1+z3.1+....

Similarly 1
1−z2 = 1 + z1.2 + z2.2 + z3.2 +

Now we can write n = m1.1+m2.2+m3.3+ ..., where mis are the multiplicities. Essentially all
possible combinations of mis are enumerated in the products as well, so the coefficient of zn equals
P (n).

3 Computing P(n)

Definition 3. We define P (n, k) to be the number of partitions of n with largest part k.

Euler gave the following recurrence relation, P (n, k) = P (n− 1, k − 1) + P (n− k, k). The first
term counts for the partitions containing exactly one copy of k and the second term contributes

2

for the partitions have more than one copy of k. Essentially given the P (n − 1, k − 1) partitions
for n − 1 with largest element k − 1 we add 1 to k − 1 to get partitions for n with exactly one k.
Same thing applies for partitions of n− k where in we add an extra k.

With the following boundary conditions we can compute P (n, k) values in a tabular fashion,
P (0, k) = 0, P (1, 1) = 1 and P (1, 2), P (1, 3), ... = 0.

0 1 2 3 4 5 6 P (n)
n = 1 0 1 0 0 0 0 0 1

2 0 1 1 0 0 0 0 2
3 0 1 1 1 0 0 0 3
4 0 1 2 1 1 0 0 5
5 0 1 2 2 1 1 0 7
6 0 1 3 3 2 1 1 11

P (n) is obtained by computing the row sum.

Theorem 1. Hardy and Ramanujan (1920s) proved that P (n) ∼ 1
4π
√

3
e
π

q
2n
3

This implies that the length of P (n), l = Θ(
√

n) (number of bits required to express P (n) is
log P (n)). To compute P (n) this way we do Θ(n2) additions, which is the number of entries in
our table. Each of numbers is ≤ P (n). So in all we do O(n5/2) i.e. O(l5) operations.

4 Algorithm for Enumerating Partitions

For this algorithm we use the multiset notation, wherein we express n = m1.p1+m2.p2+m3.p3+..+
ml.pl, with parts decreasing strictly p1 > p2 > p3 > ... > pl. So the partition 8 = 2+2+1+1+1+1
is written as 8 = 2.2 + 4.1.

The output of the algorithm will be in dictionary order. By dictionary order we mean that
given a = a1a2a3...al and b = b1b2...bl we have a < b iff ∃i st aj = bj for j < i and ai < bi.

The following algorithm is due to Gideon Ehrlich (1973). To get successor of a partition n =
m1.p1 +m2.p2 +m3.p3 + ..+ml.pl, with p1 > ... > pl we start with n.1 and use one of the following
two rules

1. Case 1: ml > 1 (right most element has multiplicity more than one) remove two copies of pl

and replace that by one copy of pl + 1 and (pl − 1) 1s.

2. Case 2: ml = 1 and l ≥ 2 remove ml−1pl−1 + pl and replace by one copy of pl−1 + 1 along
with (ml−1 − 1)pl−1& (pl − 1) 1s.

For comfort we work through an example.
n = 5 Case Action

5.1 1 2.1 → 1.2
1.2 + 3.1 1 2.1 → 1.2
2.2 + 1.1 2 2 + 2 + 1 → 1.3 + 2.1
1.3 + 2.1 1 2.1 → 1.2
1.3 + 1.2 2 3 + 2 → 1.4 + 1.1
1.4 + 1.1 2 4 + 1 → 5

1.5 done

3

Finally we sketch a proof of correctness of the algorithm. We note that the rules always apply
except when the partition is n = 1.n. The algorithm is linear and produces unique successors. This
means that the partitions are produced in dictionary order one after the other π′ with π < π′ with
no partition in between.

The algorithm may be implemented very efficiently using a stack. By storing pairs (ml, pl) and
performing push-pop operations as the case may be. In all the implementation requires O(P (n))
arithmetic operations.

4

