
A Theory of Cartesian Arrays
(with Applications in Quantum Circuit Verification)

Yu-Fang Chen1[0000−0003−2872−0336], Philipp Rümmer2,3[0000−0002−2733−7098](�),
and Wei-Lun Tsai1

1 IIS, Academia Sinica, Taiwan
2 University of Regensburg, Germany

3 Uppsala University, Sweden

Abstract. We present a theory of Cartesian arrays, which are multi-dimensional
arrays with support for the projection of arrays to sub-arrays, as well as for updating
sub-arrays. The resulting logic is an extension of Combinatorial Array Logic
(CAL) and is motivated by the analysis of quantum circuits: using projection, we
can succinctly encode the semantics of quantum gates as quantifier-free formulas
and verify the end-to-end correctness of quantum circuits. Since the logic is
expressive enough to represent quantum circuits succinctly, it necessarily has a
high complexity; as we show, it suffices to encode the k-color problem of a graph
under a succinct circuit representation, an NEXPTIME-complete problem. We
present an NEXPTIME decision procedure for the logic and report on preliminary
experiments with the analysis of quantum circuits using this decision procedure.

1 Introduction

There has been extensive research on logics to reason about array data-types in programs.
Arrays can concisely represent the values of an unbounded number of memory locations,
and have been successfully applied to verify industrial-scale programs [11,29,15]. An
array formula encoding the semantics of a program path is typically linear in the number
of program statements. Much of the existing work focuses on one-dimensional arrays
and uses nesting to handle the case of multiple dimensions.

|00000⟩ 69%

|00001⟩ 1%

. . .

|11111⟩ 1%

Fig. 1: A quantum state.

This paper studies a logic called Cartesian Array Logic
(CaAL), in which multi-dimensional arrays are treated as
first-class citizens. The motivation for designing this logic
comes from developing a tailor-made theory for reasoning
about quantum circuits or programs, which need a funda-
mentally different representation of states than classical pro-
grams. Quantum states exist in a superposition of classical
states. Figure 1 gives an example of a 5-qubit quantum state,
which can be interpreted as a probability distribution over 25 classical states; every
classical state, which can be seen as a string of n bits, is associated with a probability
of being observed.

Current SMT-based solutions for reasoning about quantum programs [3] encode
program paths to a Satisfiability Modulo Theories (SMT) formula over the theory of
real numbers. For a n-qubit quantum program, the direct encoding uses 2n variables

2 Yu-Fang Chen, Philipp Rümmer(�), and Wei-Lun Tsai

to represent the execution of a quantum circuit, one variable per classical state. The
formula representing a quantum circuit is exponential in the circuit size.

In the Cartesian Array Logic designed in this paper, one can instead encode an n-
qubit quantum state as an array s : (Bn ⇒ C) that maps each classical state to a complex
number c encoding the probability of this classical state being observed. The squared
absolute value |c|2 is the probability that the complex number c encodes. Quantum gates,
the basic operating units of a quantum circuit, can be viewed as functions that transform
one quantum state to another. We show that CaAL can concisely encode the semantics of
quantum gates, so that a path formula becomes linear in the circuit size. The semantics
of a quantum circuit is the composition of the gate encodings.

Structure of the Paper. The syntax and formal semantics of the CaAL logic will be
given in Section 2. In the same section, we show that this logic is quite expressive, it
can easily encode the satisfiability problem of a quantified Boolean formula (QBF). We
show that deciding the logic is, in fact, NEXPTIME-hard by a polynomial reduction
from the k-color problem of a succinct circuit representation of graphs [23]. As an
application, in Section 3, we show that the logic can concisely encode the semantics of
quantum circuits, using Bn as the index type and C as the value type. In Section 4, we
present a decision procedure for CaAL, extending the classical approach of read-over-
write propagation used for arrays. In the worst case, our procedure might perform an
exponential number of such propagations; hence, if the underlying logic can be decided
in NP, our logic can be decided in NEXPTIME. The preliminary experimental results
of applying this decision for quantum circuit verification can be found in Section 5.

Contributions of the paper are (i) a new array logic, CaAL, with native support for multi-
dimensional arrays; (ii) the proof the satisfiability problem of CaAL is NEXPTIME-hard;
(iii) a linear encoding of the semantics of quantum circuits in CaAL; (iv) an NEXPTIME
decision procedure for CaAL without nested array sorts; and (v) a preliminary evaluation
of our approach using standard quantum circuits.

Related Work on Verification of Quantum Circuits. Although quantum states can be
naturally represented as arrays, the connection between array theories and quantum
circuit verification is novel, to the best of our knowledge. In the past, people have con-
sidered automated quantum circuit verification based on automata [7], various types
of equivalence checking [1,9,19,33], abstract interpretation [34,24], and model check-
ing [13,21,32]. However, techniques based on satisfiability modulo theories (SMT) are
still lacking. The closest work to ours is a symbolic execution and verification frame-
work of quantum circuits [3]. The work encodes quantum circuit verification problems
into SMT with the theory of real numbers, using variables in trigonometric functions,
e.g., sinx, which might lose precision in corner cases. As mentioned, their approach
requires 2n variables to encode a n-qubit circuit in the worst case. As far as we know,
our work is the first SMT-based approach that allows a precise and succinct encoding
and verification of quantum circuits.

Related Work on Array Theories. There is a large body of research on array decision
procedures for SMT, going back to the 1980s, and most SMT solvers implement at least

A Theory of Cartesian Arrays 3

the theory of extensional arrays (with operations read and write/store) in our paper,
as standardized in SMT-LIB [2]. Stump et al. [29] presented a decision procedure for
this theory and formed the basis for many later procedures. An extension of the theory,
called Combinatorial Array Logic (CAL), with functions for constant arrays and for
the point-wise extension of functions was presented by De Moura et al. [11]. CAL
served as the main inspiration for our work and is in this paper extended further by
adding projections and updates of sub-arrays. An extension of CAL with cardinality
constraints was presented by Raya et al. [25]. Christ et al. [8] present an algorithm for
the theory of arrays where lemmas are created lazily based on weak equivalences; this
method was later extended to handle constant arrays [20].

There are also many more generalized decision procedures for arrays. For instance,
Ganesh et al. [16] focus on the combined theory of arrays and bit-vectors and present a
decision procedure based on pre-processing, bit-blasting, and linear arithmetic solving.
Brummayer et al. present a decision procedure for the same theory that introduces
lemmas lazily, guided by congruence closure [6]. An extended array theory tailored
to software, including operations memset and memcpy, was presented by Falke et
al. [12]. More recently, several theories of finite arrays were proposed. Bonacina et
al. [5] extend the standard theory of arrays with an abstract notion of length, and present
a decision procedure based on the CDSAT framework. Wang et al. [31] consider a logic
extending CAL with a length function, as well as operations for concatenation, slicing,
and repetition of arrays, and identify a decidable fragment. Sheng et al. [27] propose a
theory of sequences that combines the standard array operations with a length function,
concatenation, and slicing. All those logics cannot directly encode quantum circuits in
a similar style as CaAL, however, since no projection operation is available.

2 A Theory of Cartesian Arrays
2.1 Preliminaries
We work in the setting of multi-sorted first-order logic with equality; see, e.g., [18]. A
signature is a tuple Σ = (ΣS , ΣF , ΣP) consisting of a set ΣS of sorts, a set ΣF of
function symbols, and a set ΣP of predicates. Predicates and functions have fixed arity
and argument sorts, and functions have a fixed result sort. Given a signature Σ and a
set X of sorted variables, we define the usual notions of Σ-terms, Σ-atoms, Σ-literals,
Σ-formulas, and Σ-sentences. Formulas are evaluated over Σ-structures M = (D, I)
that interpret every sort σ ∈ ΣS as a non-empty domain I(σ) ⊆ D, predicates p ∈ ΣP

as relations I(p), and functions f ∈ ΣF as set-theoretical functions I(f). We slightly
abuse notation; we assume that also variables x ∈ X are mapped to values I(x) by M .
The evaluation of terms, formulas, etc., is defined as is common; the equality symbol =
is assumed to be interpreted as the equality relation on D. A theory T over Σ is a
set of Σ-sentences. A Σ-formula ϕ is called T -satisfiable if there is a Σ-structure M
satisfying both the T -axioms and ϕ.

2.2 Definition of the Theory of Cartesian Arrays
Cartesian arrays are introduced in the context of a base signature ΣB and a base ΣB-
theory TB , which provides the index and value sorts for arrays. The signature ΣCaAL =

4 Yu-Fang Chen, Philipp Rümmer(�), and Wei-Lun Tsai

Table 1: Operations included in ΣF
CaAL for each sort (σn ⇒ τ).

·[·, . . . , ·] : (σn ⇒ τ)× σn → τ Reading of array values.
store : (σn ⇒ τ)× σn × τ → (σn ⇒ τ) Updating of array values.
K : τ → (σn ⇒ τ) Construction of constant arrays.
mapf : (σn ⇒ τ1)× · · · × (σn ⇒ τk) → (σn ⇒ τ) Point-wise extension of base

function f : τ1 × · · · × τk → τ .
proj k : (σn ⇒ τ)× σ → (σn−1 ⇒ τ) For n > 1 and k ∈ {1, . . . , n},

projection to n−1 of the indexes.
arrayStorek : (σn ⇒ τ)× σ × (σn−1 ⇒ τ) → (σn ⇒ τ) For n > 1 and k ∈ {1, . . . , n},

update of a sub-array.

(ΣS
CaAL, Σ

F
CaAL, Σ

P
CaAL) of CaAL is then defined as follows. The set of sorts is the least

set ΣS
CaAL such that (i) ΣS

B ⊆ ΣS
CaAL, and (ii) σ, τ ∈ ΣS

CaAL and n ∈ N>0 imply
(σn ⇒ τ) ∈ ΣS

CaAL. A sort (σn ⇒ τ) is an array sort of arity n with index sort σ and
value sort τ .

The set ΣF
CaAL includes ΣS

B , as well as the operations listed in Table 1 for every
array sort (σn ⇒ τ). The operators ·[·, . . . , ·] and store are the functions for reading
from and writing to arrays, as in the standard theory of arrays.K and mapf correspond
to the functions introduced in CAL [11]; in particular, any base function f ∈ ΣF

B is
lifted to an operator on arrays using mapf . The operators proj and arrayStore are
specific to our theory CaAL, and can be used to project an n-dimensional array to an
(n − 1)-dimensional sub-array by fixing the value of the k’th index, and to update the
corresponding portion of the original array, respectively. The set ΣP

CaAL coincides with
ΣP

B . Semantics is defined by the axiom schemata in Table 2.

Example 1. We illustrate the use of two-dimension arrays s, s′ : (B2 ⇒ C) to encode
two-qubit quantum states. Suppose that s represents the state 1√

2
(|00⟩ + |11⟩), and

s′ = X2(s) is the quantum state after applying an X gate (the quantum version of a
“not”-gate) on the 2nd qubit of s. The matrix representations of s and s′ are as follows;
note that the results of x2 = 0 and x2 = 1 are swapped in s and s′.

s =

(x1=0 x1=1

x2=0
1√
2

0

x2=1 0 1√
2

)
, s′ =

(x1=0 x1=1

x2=0 0 1√
2

x2=1
1√
2

0

)
.

The projection proj 1(s, k) maps the matrix s to its k’th column vector, specif-
ically the column with x1 = k. In CaAL, we can construct s′ from s as s′ =
arrayStore2(arrayStore2(K(0), 1, proj 2(s, 0)), 0, proj 2(s, 1)). To compute the sum
of the two matrices, we use map+(s, s

′), which is also utilized for other quantum gate
operations.

Several extensions of the theory of Cartesian arrays are possible but beyond the scope
of this paper. Those include (i) arrays with multiple different index sorts, as opposed to

A Theory of Cartesian Arrays 5

Table 2: Axioms of the Theory of Cartesian Arrays. As shorthand notation, we write
ī : σn for a vector of n index variables i1 : σ, . . . , in : σ.

∀a : (σn ⇒ τ), ī : σn, x : τ.

store(a, ī, x)[ī] = x
(1)

∀a : (σn ⇒ τ), ī : σn, j̄ : σn, x : τ.

ī = j̄ ∨ store(a, ī, x)[j̄] = a[j̄]
(2)

∀a, b : (σn ⇒ τ). ∃ī : σn.

a = b ∨ a[ī] ̸= b[ī]
(3)

∀x : τ, ī : σn.

K(x)[ī] = x
(4)

∀a1 : (σn ⇒ τ1), . . . , ak : (σn ⇒ τk), ī : σ
n.

mapf (a1, . . . , ak)[ī] = f(a1[ī], . . . , ak[ī])
(5)

∀a : (σn ⇒ τ), ī : σn.

proj k(a, ik)[i1, . . . , ik−1, ik+1, . . . , in] = a[ī]
(6)

∀a : (σn ⇒ τ), b : (σn−1 ⇒ τ), ī : σn.

arrayStorek(a, ik, b)[ī] = b[i1, . . . , ik−1, ik+1, . . . , in]
(7)

∀a : (σn ⇒ τ), b : (σn−1 ⇒ τ), ī : σn, j : σ.

j = ik ∨ arrayStorek(a, j, b)[ī] = a[ī]
(8)

just n copies of the same index sort σ; and (ii) a theory that also includes point-wise
extensions of predicates.

2.3 Complexity of Satisfiability in CaAL

We now study the hardness of satisfiability of quantifier-free CaAL formulas. The quan-
tified Boolean formula problem (QBF) generalizes the Boolean satisfiability problem
by allowing existential and universal quantifiers to be applied to variables. Its satisfi-
ability problem is PSPACE-complete [28]. Without loss of generality, we can assume
that QBF formulas are in prenex normal form Q1x1.Q2x2. · · ·Qnxn.ϕ, which consists
of a Boolean formula ϕ over n Boolean variables x1, . . . , xn, and a prefix of quanti-
fiers Q1, Q2, . . . , Qn ∈ {∀,∃}.

To reduce the satisfiability problem of QBF to CaAL, we assume that the base theory
provides a sort B with the standard operations. This sort will be used for both index
and values. An array toCaAL(ϕ) : (Bn ⇒ B) encoding the semantics of ϕ is defined
recursively as follows:

– toCaAL(xk) = arrayStorek(K(0), 1,K(1)).
– toCaAL(¬ϕ) = map¬(toCaAL(ϕ)).
– toCaAL(ϕ1 ∧ ϕ2) = map∧(toCaAL(ϕ1), toCaAL(ϕ2)).

6 Yu-Fang Chen, Philipp Rümmer(�), and Wei-Lun Tsai

Observe that arrayStorek(K(0), 1,K(1))[i1, . . . , ik, . . . , in] = ik, and note that the
size of toCaAL(ϕ) is linear in the size of ϕ. We can construct a CaAL formula that is
equisatisfiable with Q1x1. · · ·Qnxn.ϕ as follows:

QElim(Q1x1. · · ·Qnxn.ϕ) =

(q1[0]⊙1 q1[1]) ∧
n∧

i=2

qi−1 = map⊙i
(proj i(qi, 0), proj i(qi, 1)) ∧ qn = toCaAL(ϕ)

where ⊙i = ∧ when Qi = ∀, and ⊙i = ∨ otherwise. Note that the QBF formula
Q1x1. · · ·Qnxn.ϕ is valid if and only if the CaAL formula QElim(Q1x1. · · ·Qnxn.ϕ)
is satisfiable.

Theorem 1. The satisfiability problem of CaAL over B is PSPACE-hard.

This lower bound can be improved, however. The k-colorability problem for graphs
with succinct circuit representation is NEXPTIME-complete [23]. This problem can be
reduced to the satisfiability problem of CaAL in polynomial time as well.

Consider an undirected graph with 2n nodes, and let ϕ(x̄, x̄′) be a Boolean circuit
encoding the edge relation of the graph: ϕ(x̄, x̄′) evaluates to true whenever there is an
edge (x̄) → (x̄′) in the graph. The k-colorability of the graph can be characterized as
the following formula, where c : (Bn → N) is an array representing the color of each
node:

∀x̄, x̄′ : Bn. ϕ(x̄, x̄′) → c[x̄] ̸= c[x̄′] ∧ c[x̄] < k ∧ c[x̄′] < k .

In a similar way as for QBF, we encode ϕ as an array formula ϕ′ of linear size, in
which aϕ : (Bn ×Bn ⇒ B) is an array variable representing the edge relation. We then
create two intermediate arrays a, b : (Bn × Bn ⇒ N) and use the following formula in
CaAL to encode the relation ∀x̄, x̄′ : Bn. a[x̄, x̄′] = c[x̄] ∧ b[x̄, x̄′] = c[x̄′]:

EqColor(a, b, c) ≡

a = an ∧ c = a0 ∧
n∧

j=1

projj+n(aj , 0) = projj+n(aj , 1) = aj−1 ∧

b = bn ∧ c = b0 ∧
n∧

j=1

projj(bj , 0) = projj(bj , 1) = bj−1

Then we encode the k-color problem with the following CaAL formula:

ϕ′ ∧ EqColor(a, b, c) ∧mapf (aϕ, a, b) = K(1)

where f(e, col1 , col2) ≡ e→ (col1 ̸= col2 ∧ col1 < k ∧ col2 < k) .

Theorem 2. The satisfiability problem of CaAL is NEXPTIME-hard.

3 Array Semantics of Quantum Circuits

As an application, we show that CaAL can encode the semantics of quantum circuits.
Below, we only give a short overview of quantum circuits and define notations; for more
details, see, e.g., the textbook of Nielsen and Chuang [22].

A Theory of Cartesian Arrays 7

In a n-qubit quantum, a state is a superposition of computational basis states
{|j⟩ | j ∈ {0, 1}n}. For example, for a system with three qubits x1, x2, and x3,
the computational basis state |101⟩ (in Dirac notation) denotes a state in which both x1
and x3 are set to 1, and x2 is set to 0. A n-qubit quantum state s is then denoted as
a formal sum

∑
j∈{0,1}n cj · |j⟩, where c0, c1, . . . , c2n−1 ∈ C are complex probability

amplitudes satisfying the constraint that
∑

j∈{0,1}n |cj |2 = 1. Intuitively, |cj |2 is the
probability that when we measure the quantum state s in the computational basis, we
obtain the basis state |j⟩. The constraint

∑
j∈{0,1}n |cj |2 = 1 states that probabilities

need to sum up to 1 for all computational basis states.
We can record a quantum state as an array that maps a computational basis state to

its complex probability amplitudes. The state s is represented as an array s : (Bn ⇒ C)
satisfying s[j] = cj for all j ∈ {0, 1}n; slightly abusing notation, we denote both the
state and the array by s.

3.1 Quantum Circuits

|x1⟩ H

|x2⟩

Fig. 2: The EPR circuit, consisting
of anH and aCX gate with control
qubit (•) and target qubit (⊕).

A quantum circuit consists of a sequence of quan-
tum gates. Each quantum gate defines a specific
transformation of quantum states. For example,
the Pauli-X gate (the quantum version of classi-
cal “not” gate) on the k-th qubit transforms a state
s to s′ satisfying ∀i ∈ {0, 1}k−1, b ∈ {0, 1}, j ∈
{0, 1}n−k : s′[ibj] = s[ib̄j], i.e., it negates the
k-th index bit.

Another example is the Pauli-Z gate on the k-
th qubit, which transforms a state s to s′ satisfying
∀i ∈ {0, 1}k−1, b ∈ {0, 1}, j ∈ {0, 1}n−k : s′[ibj] = ite(b,−1 · s[ibj], s[ibj]). Here,
probability amplitudes are multiplied with−1when b is 1, and are unchanged otherwise.

A H gate, or Hadamard gate, on the k-th qubit transforms a state s to s′ satisfying
∀i ∈ {0, 1}k−1, b ∈ {0, 1}, j ∈ {0, 1}n−k :

s′[ibj] = ite(b,
s[i0j]− s[i1j]√

2
,
s[i0j] + s[i1j]√

2
).

Notice that the amplitude of a basis state of s′ is affected by the amplitude of two
basis states of s, enabling a more diverse superposition. The division with

√
2 is for

normalizing the probability sum.
A more advanced class of gates are multiple-qubit gates. The CX gate (“controlled-

X”) on the control qubit c and target qubit t applies an X gate to t when c is 1, and
is identity otherwise. Formally, assuming c < t, the gate transforms a state s to s′

satisfying ∀i1 ∈ {0, 1}c−1, bc ∈ {0, 1}, i2 ∈ {0, 1}t−c−1, bt ∈ {0, 1}, i3 ∈ {0, 1}n−t :

s′[i1bci2bti3] = ite(bc, s[i1bci2b̄ti3], s[i1bci2bti3]).

The Toffoli gate CCX (“controlled-controlled-X gate”) has two control qubit c, d and
applies the X gate to the target qubit t only when c = d = 1.

8 Yu-Fang Chen, Philipp Rümmer(�), and Wei-Lun Tsai

Table 3: Semantics of quantum gates in Cartesian array logic. We use s and s′ to denote
the quantum state before and after executing the circuit.

Gate Formula

Xk proj k(s
′, 0) = proj k(s, 1) ∧

proj k(s
′, 1) = proj k(s, 0)

Yk proj k(s
′, 0) = map∗(−ω2)proj k(s, 1) ∧

proj k(s
′, 1) = map∗(ω2) proj k(s, 0)

Zk proj k(s
′, 0) = proj k(s, 0) ∧

proj k(s
′, 1) = map∗(−1)proj k(s, 1)

Sk proj k(s
′, 0) = proj k(s, 0) ∧

proj k(s
′, 1) = map∗(ω2) proj k(s, 1)

Tk proj k(s
′, 0) = proj k(s, 0) ∧

proj k(s
′, 1) = map∗(ω) proj k(s, 1)

Hk proj k(s
′, 0) = map(.+.)/

√
2(proj k(s, 0), proj k(s, 1)) ∧

proj k(s
′, 1) = map(.−.)/

√
2(proj k(s, 0), proj k(s, 1))

Rx(π
2
)k proj k(s

′, 0) = map(.+(−ω2)∗.)/
√

2(proj k(s, 0), proj k(s, 1)) ∧
proj k(s

′, 1) = map((−ω2)∗.+.)/
√
2(proj k(s, 0), proj k(s, 1))

Ry(π
2
)k proj k(s

′, 0) = map(.−.)/
√
2(proj k(s, 0), proj k(s, 1)) ∧

proj k(s
′, 1) = map(.+.)/

√
2(proj k(s, 0), proj k(s, 1))

CXc,t proj c(s
′, 0) = proj c(s, 0) ∧

proj t(proj c(s
′, 1), 0) = proj t(proj c(s, 1), 1)∧

proj t(proj c(s
′, 1), 1) = proj t(proj c(s, 1), 0)

CZc,t proj c(s
′, 0) = proj c(s, 0) ∧

proj t(proj c(s
′, 1), 0) = proj t(proj c(s, 1), 0)∧

proj t(proj c(s
′, 1), 1) = map∗(−1)proj t(proj c(s, 1), 1)

CCXc,d,t proj c(s
′, 0) = proj c(s, 0) ∧

proj d(s
′, 0) = proj d(s, 0) ∧

proj t(proj d(proj c(s
′, 1), 1), 0) = proj t(proj d(proj c(s, 1), 1), 1) ∧

proj t(proj d(proj c(s
′, 1), 1), 1) = proj t(proj d(proj c(s, 1), 1), 0)

We have introduced enough quantum gates to define the EPR circuit (Fig. 2), named
after Einstein, Podolsky, and Rosen for constructing the Bell state, i.e., a 2-qubit circuit
converting a basis state |00⟩ to a maximally entangled state 1√

2
(|00⟩ + |11⟩). Starting

from a state s (represented s that maps 00 to 1 and others to 0, the circuit first applies
H on the first qubit x1 (denoted H1 in this paper) to produce the quantum state s′ with
s′[00] = s′[10] = 1√

2
and s′[11] = s′[01] = 0. Then a CX1,2 converts it further to s′′

with s′′[00] = s′′[11] = 1√
2

and s′′[01] = s′′[10] = 0. Notice that CX1,2 converts |10⟩
to |11⟩, i.e., when x1 is 1, it negates x2.

Note on complexity. Simulation of a quantum circuit is bounded-error quantum polyno-
mial time (BQP) hard, a complexity class that is incomparable with NP, as it can compute
exactly the probability amplitudes of a quantum state after executing a circuit. We will
show that the Cartesian array logic can encode the semantics of quantum circuits, so

A Theory of Cartesian Arrays 9

one can also use the logic for quantum circuit simulation. Hence, exponential time is the
best deterministic algorithm we can hope for when solving CaAL formulas.

3.2 Interpretation of Quantum Gates

We show the encoding of quantum gates in CaAL in Table 3. Notice that this gate set
includes several universal gates (e.g., H , CX , and T [10]) that can approximate any
quantum gate to an arbitrary precision requirement. Arbitrary degree rotation can also
be supported using the theory of reals as the base theory. This paper presents a precise
encoding that only requires a theory of integers. In the figure, we use s and s′ to denote the
quantum states (encoded as arrays) before and after executing a quantum gate. To encode
s′ = Xk(s), negating the k-th qubit, we use proj k(s′, 0) = proj k(s, 1)∧proj k(s

′, 1) =
proj k(s, 0): index k = 0 in s′ equals the case of k = 1 in s. The handling of Z, S, and
T gates is similar, using the map function to multiply the array values with different
constants. Note that here we use ω to represent eπi

4 = cos π
4 + i sin π

4 = 1√
2
+ i√

2
,

the unit vector that is at an angle of 45◦ to the positive real axis in the complex plane.
Later we will show that this representation allows a precise algebraic representation of
complex numbers using a five-tuple of integers. Observe that ω4 = −1. The Y gate
combines the two constructions; it negates the k-th index qubit and multiplies each
projection with different constant coefficients. For the H , Rx(π2), and Ry(π2) gates, we
use a binary map function to update the amplitudes. For the controlled gates, we use
the projection function to classify the cases according to the control bits and apply the
X or Z gate only when all controlled bits are 1.

Example 2. We use CaAL to verify the correctness of the EPR circuit Fig. 2: the circuit
transforms the state |00⟩ to 1√

2
(|00⟩ + |11⟩). For this, the initial state of the circuit is

encoded as an array expression, the H and CX gates are encoded according to Table 3,
and the intended final state of the circuit is represented as a negated equation:

s0 = store(K(0), (0, 0), 1)

∧ proj 1(s1, 0) = map(.+.)/
√
2(proj 1(s0, 0), proj 1(s0, 1))

}
s1 = H1(s0)∧ proj 1(s1, 1) = map(.−.)/

√
2(proj 1(s0, 0), proj 1(s0, 1))

∧ proj 1(s2, 0) = proj 1(s1, 0) }
s2 = CX1,2(s1)∧ proj 2(proj 1(s2, 1), 0) = proj 2(proj 1(s1, 1), 1)

∧ proj 2(proj 1(s2, 1), 1) = proj 2(proj 1(s1, 1), 0)

∧ s2 ̸= store(store(K(0), (1, 1),
1√
2
), (0, 0),

1√
2
)

The formula is unsatisfiable if and only if the EPR circuit correctly performs the trans-
formation.

Representation of complex numbers. To achieve accuracy with no loss of precision,
in this paper, when working with C, we use a subset of the complex numbers that the

10 Yu-Fang Chen, Philipp Rümmer(�), and Wei-Lun Tsai

Table 4: Tableau proof rules of the decision procedure for CaAL.

a = store(b, ī, v)
idx

v = a[̄i]

a = K(v) w = a′ [̄i] a ∼ a′

K ⇓
v = w

a = store(b, ī, v) w = a′[j̄] a ∼ a′

store ⇓
ī = j̄ w = b[j̄]

a = store(b, ī, v) w = b′[j̄] b ∼ b′
store ⇑

ī = j̄ w = a[j̄]

a = mapf (b1, . . . , bm) w = a′ [̄i] a ∼ a′

map ⇓
w = f(b1 [̄i], . . . , bm [̄i])

a = mapf (b1, . . . , bm) w = b′ [̄i] b′ ∼ bk for some k ∈ {1, . . . ,m}
map ⇑

a[̄i] = f(b1 [̄i], . . . , bk−1 [̄i], w, bk+1 [̄i], . . . , bm [̄i])

a = projk(b, j) w = a′ [̄i] a ∼ a′

proj ⇓
w = b[i1, . . . , ik−1, j, ik, . . . , in−1]

a = projk(b, j) w = b′ [̄i] b ∼ b′
proj ⇑

j ̸= ik w = a[i1, i2, . . . , ik−1, ik+1, . . . , in]

a = arrayStorek(b, j, c) w = a′ [̄i] a ∼ a′

arrayStore ⇓
j = ik ∧ w = c[i1, . . . , ik−1, ik+1, . . .] j ̸= ik ∧ w = b[̄i]

a = arrayStorek(b, j, c) w = b′ [̄i] b ∼ b′
arrayStore ⇑1

j = ik w = a[̄i]

a = arrayStorek(b, j, c) w = c′ [̄i] c ∼ c′
arrayStore ⇑2

w = a[i1, . . . , ik−1, j, ik, . . . , in−1]

a : (σn ⇒ τ) b : (σn ⇒ τ)
ext

a = b ∃ī : σn. a[̄i] ̸= b[̄i]

i1, . . . , ik : σ
freshIdx ∃j : σ. j ̸= i1 ∧ · · · ∧ j ̸= ik

a : (σn ⇒ τ) ī : σn

read
∃v : τ. v = a[̄i]

v = a[̄i] w = b[j̄] a ∼ b
readCong

ī ̸= j̄ ī = j̄ ∧ v = w

following algebraic encoding can express (cf. [35,30,7]):

(1√
2

)
k(a+ bω + cω2 + dω3), (9)

wherea, b, c, d, k ∈ Z. A complex number is then represented by a five-tuple (a, b, c, d, k).
Although the considered set of numbers is only a small subset of C, it is closed under
the operations needed to encode quantum gates, and it can arbitrarily closely approxi-
mate any complex number. For this, note that (a, 0, c, 0, k) represents 1√

2
k (a+ cω2) =

a√
2
k +

ci√
2
k , and pick suitable a, c, and k. The representation is also sufficient to describe

a set of quantum gates that can implement universal quantum computation (Table 3).

A Theory of Cartesian Arrays 11

4 A Decision Procedure for Cartesian Arrays

We now present a decision procedure for quantifier-free CaAL. Our calculus is an
extension of the calculus for CAL [11] with rules for the proj and arrayStore operations.
For the sake of presentation, we use the setting of analytic tableaux [14], although the
same proof rules can be used also in a model-constructing calculus [11].

As a simplifying assumption, in this section we furthermore require that the index
sorts σ of an array sort (σn ⇒ τ) represent infinite domains. This assumption can be
lifted in the same way as for CAL [11], but the details are orthogonal to the task of
supporting the new array operations.

4.1 Preliminaries

A tableau [14] is a finite tree growing downwards, in which each node is labelled with
a formula, the root is labelled with the formula to be refuted, and the children of each
node are derived from the formulas on the branch leading to the node using one of the
available proof rules. We assume a tableau calculus equipped with a set of standard
rules [14]: (i) α- and β-rules for eliminating Boolean connectives ∧,∨; (ii) δ-rules for
eliminating existential quantifiers ∃; (iii) rules for reasoning about positive and negative
equalities x = y between variables, which include rules for closing proof branches;
(iv) rules implementing a decision procedure for the base theory TB .

Our calculus operates on flat formulas, which are formulas in which functions f
only occur in equations y = f(x̄) in positive positions, i.e., underneath an even number
of negations, with y, x̄ being variables. Every formula can be converted to a flat formula
by introducing a linear number of new variables.

We define proof rules using the following notation:

ϕ1 ϕ2 · · · ϕk
rule

ψ1 · · · ψm

The rule is applicable if the premises ϕ1, . . . , ϕk occur on a proof branch, and has the
effect of expanding the tableau: the proof branch is split into m new branches, to which
the formulas ψ1, . . . , ψm, respectively, are appended.

In the premises of a rule, we frequently include assumptions x ∼ y that require
that the equality x = y follows from positive equalities between variables on the proof
branch. We also use premises x : σ, stating that x is a variable of sort σ occurring on
the proof branch.

4.2 Proof Rules

The rules of our calculus are shown in Table 4. The rules idx,K ⇓, store ⇓, store ⇑,
map ⇓,map ⇑ coincide with the rules used for CAL [11], and define the semantics of
the operators K, store, and map. Extensionality is implemented by the rule ext, which
can be applied for any two array variables a, b of the same type occurring on a branch.

The semantics of proj and arrayStore is defined, in a similar way as for store , by
upward and downward propagation of array reads. Since arrayStorek(b, j, c) combines

12 Yu-Fang Chen, Philipp Rümmer(�), and Wei-Lun Tsai

two arrays b, c into a single new array, downward propagation has to route reads either
to b or to c. Upward propagation from c is always possible, while reads on b can only be
propagated if they are not overwritten by c.

For sake of presentation, we write the conclusion in the rules map⇓,map⇑, and ext
in non-flat form, and assume that the transformation to a flat formula happens implicitly
by adding existentially quantified variables representing the sub-terms.

Congruence reasoning is necessary only for array reads, and implemented using the
rule readConq. For simplicity, in our formulation the rule splits over the cases ī ̸= j̄ and
ī = j̄, and effectively searches for an arrangement of the index variables satisfying a
formula. An actual implementation could rely on equality propagation being performed
by a theory combination procedure.

As one of the more tricky points, the completeness of the calculus sometimes
requires new array reads to be generated. This aspect is covered by the rules ϵ̸≃ and
ϵδ in CAL [11], which are rules that can, however, not directly be used in our setting
of multi-dimensional arrays. To obtain completeness, our calculus sometimes has to
construct reads by combining different index variables occurring on a branch, and
sometimes invent index values that are distinct from all indexes occurring in a formula.
The introduction of corresponding new reads is handled by the rules freshIdx and read.

Example 3. Consider arrays a, b : (Z2 ⇒ Z), and the formulas

proj 1(a, i) = K(42) ∧ proj 2(a, j) = K(43) (10)
a = K(42) ∧ b = store(a, (i, i), 43) ∧ proj 1(b, i) = K(43) (11)

Both formulas are unsatisfiable, but cannot be refuted using the rules discussed so far.
In (10), no reads a[· · ·] exist, so that no propagations can be performed by any of the
rules. It is necessary to identify the constraints on the value a[i, j] as contradictory. The
rule read can be used to introduce a new formula ∃v. v = a[i, j] on a proof branch, after
which the rules proj ⇑ and K⇓ can be applied.

To show that (11) is unsatisfiable, we need to consider a point (i, j) with j ̸= i
and derive that a[i, j] = b[i, j] = 42, and contradicting proj 1(b, i) = K(43). The
introduction of a fresh index value j (different from i) is handled by the rule freshIdx,
which relies on the index sort σ representing an infinite domain. Once the existence of
an index j ̸= i has been asserted, the rule read can be used to introduce an equation v =
a[i, j], and the contraction be derived.

4.3 Correctness and Complexity

Theorem 3. The presented tableau calculus is sound and complete for flat quantifier-
free CaAL formulas: there is a closed tableau for a formula ϕ if and only if ϕ is
unsatisfiable.

Proof. Soundness: As usual, we identify each proof branch with the conjunction of its
formulas and a tableau with the disjunction of its proof branches. It can be shown that
the tableau before expansion using a proof rule is equi-satisfiable to the tableau before
the expansion, modulo the array axioms in Table 2.

A Theory of Cartesian Arrays 13

Completeness: We make the simplifying assumption that ϕ only contains arrays with
(infinite) index sort σ and value sort τ , and in particular that array sorts are not nested.
Completeness for the general case follows by recursively applying model construction.

Consider then the systematic construction of a tableau for a formula ϕ by exhaus-
tively applying proof rules under the following restrictions: (i) regularity, i.e., rules
are only applied if they lead to new formulas being added to each generated branch;
(ii) rule freshIdx can only be applied once on a branch, only after ext has been applied
to all pairs a, b of array variables on the branch, and choosing i1, . . . , ik as the set of all
variables of sort σ on the branch.

Observe that this systematic application of rules terminates: the calculus never
introduces new array variables so that only finitely many applications of ext are possible.
Note that ext and freshIdx are the only rules introducing new index variables. Since
freshIdx is applied at most once on a branch, the set of index variables is bounded, and
there is only a bounded number of array reads v = a[̄i].

Assume now that a tableau for ϕ cannot be closed, i.e., has at least one branchB that
cannot be closed, although all possible rule applications have been performed. We extract
a model of ϕ from B. Suppose that MT = (DT , IT) is a model that interprets the non-
array-variables (including index variables), satisfying all literals onB that do not contain
array variables, and denote the equivalence class of an array variable a onB by [a] = {b |
a ∼ b}. Extending IT , we construct an interpretation I with I((σn ⇒ τ)) = IT (σ)

n →
IT (τ) being a function space, and the theory functions ·[·], store,K,mapf , proj and
arrayStore having their expected meaning. I is constructed in such a way that all array
literals onB are satisfied; the satisfaction of compound formulas onB, and in particular
of ϕ, then follows like in the standard Hintikka construction [14].

The interpretation I(a) of an array variable a : (σn ⇒ τ) is derived from the array
reads on [a] occurring onB. The main difficulty is to consistently interpret the (infinitely
many) elements of the array that are not mentioned explicitly on B. For this, denote the
index variable introduced by the unique freshIdx application onB by ϵ, and observe that
its value IT (ϵ) is distinct from the value of all other index variables. We will use values
read from IT (ϵ)-locations as default values for the arrays. Let

Ra = {(⟨IT (i1), . . . , IT (in)⟩, IT (v)) | v = b[̄i] occurs on B and a ∼ b}

be the set of array reads for a : (σn ⇒ τ). The relation Ra describes a non-empty,
consistent (but partial) valuation of the array elements, due to the exhaustive application
of rules read and readCong.

The gaps in Ra will be filled with default values introduced by ϵ. For this, we define
a precedence ordering ⪯ ⊆ IT (σ)

∗ × IT (σ)
∗ over index vectors; intuitively, c̄ ⪯ d̄ if c̄

and d̄ agree in all components, unless dk = IT (ϵ), which is interpreted as don’t-care:

⟨c1, . . . , ck⟩ ⪯ ⟨d1, . . . , dm⟩ iff k = m and ∀i ∈ {1, . . . , k} : ci = di ∨ di = IT (ϵ)

The value of array variable I(a) ∈ I((σn ⇒ τ)) is then:

I(a) =

{
(c̄, x) | (d̄, x) ∈ Ra, where c̄ ⪯ d̄

and for all (d̄′, x′) ∈ Ra : if c̄ ⪯ d̄′ then d̄ ⪯ d̄′

}

14 Yu-Fang Chen, Philipp Rümmer(�), and Wei-Lun Tsai

To see that I(a) is functionally consistent, note that whenever (d̄, x) and (d̄′, x′) exist
in Ra such that c̄ ⪯ d̄ and c̄ ⪯ d̄′, then there is also some (d̄′′, x′′) ∈ Ra such that
c̄ ⪯ d̄′′ ⪯ d̄, d̄′. This is because the rule read has been applied exhaustively.

It remains to be shown that I satisfies all array literals. By construction, equa-
tions a = b will be satisfied. To see that equations v = a[̄i] hold, note that I(a) ⊇ Ra.
Equations a ̸= b are satisfied due to the exhaustive application of ext: there has to be
some vector ī of index variables such that a[̄i] ̸= b[̄i].

All other array literals are positive equations of the form x = f(ȳ), and hold because
exhaustive propagation of read atoms was performed. As an example, consider an equa-
tion a = proj k(b, j); it has to be shown that I(a) = {(⟨c1, . . . , ck−1, ck+1, . . . , cn⟩, x) |
(c̄, x) ∈ I(b), ck = IT (j)}. Observe that Ra = {(⟨c1, . . . , ck−1, ck+1, . . . , cn⟩, x) |
(c̄, x) ∈ Rb, ck = IT (j)} due to the rules proj ⇓ and proj ⇑. Consider then a
point (c̄, x) ∈ I(a), defined by (d̄, x) ∈ Ra, and the corresponding index vectors c̄′ =
⟨c1, . . . , ck−1, IT (j), ck, . . . , cn−1⟩ and d̄′ = ⟨d1, . . . , dk−1, IT (j), dk, . . . , dn−1⟩ in
Rb, and show that (c̄′, x) ∈ I(b) is defined by (d̄′, x) ∈ Rb. ⊓⊔

The proof of the theorem highlights the restrictions necessary to obtain a decision
procedure for CaAL: all rules should be applied under the condition of regularity, and
the rule freshIdx has to be restricted to at most one application per branch, and only after
applications of ext have been performed.

To evaluate runtime, like in the proof of Theorem 3 we make the assumption that
there are no nested array sorts, i.e., index and value sorts are themselves not arrays. To
avoid degenerate cases when evaluating runtime, we assume that a formula ϕ cannot be
smaller than the maximum arity of occurring array variables. We then get:

Lemma 1. The satisfiability problem of quantifier-free CaAL formulas ϕwithout nested
array sorts is in NEXPTIME, assuming that the satisfiability problem of the base theory
is in NP.

Proof. This follows from the proof of Theorem 3. On every branch, the rule ext can
be applied at most quadratically often, and the number of index variables occurring
on a branch is polynomial in the size of the input formula ϕ. The number of distinct
read atoms v = a[̄i] that can be introduced on a branch, and therefore the number of
rule applications altogether is then polynomially bounded by the number of variables
in ϕ, and exponentially bounded in the maximum arity of array variables in ϕ. After
exhaustive application of the rules in Table 4, solving an at most exponential number of
base theory formulas (with at most exponential size) on a branch is in NEXPTIME. ⊓⊔

4.4 Optimizations

The calculus and decision procedure are primarily designed with simplicity in mind,
rather than focusing on practical efficiency. Although the procedure’s complexity may
not be reduced below NEXPTIME, incorporating various optimizations can yield signif-
icant practical improvements. Two obvious improvements to be considered are: (i) The
detection of linear array variables, which are essentially variables that are assigned to
at most once in array literals [11]. It is enough to perform upward propagation (rules ⇑)

A Theory of Cartesian Arrays 15

Table 5: Experimental results. We list the circuit name, the number of qubits and gates
in the circuit, the verification result, and the execution time.

circuit qubits gates result time circuit qubits gates result time

H2 1 2 OK 3.1s H2 (bug) 1 2 bug 3.0s
BV 1 3 OK 3.2s BV (bug) 1 3 bug 3.3s
BV 2 5 OK 6.4s BV 5 13 OK 1m59.0s
BV 3 8 OK 16.8s BV 6 15 OK 9m13s
BV 4 10 OK 43.2s BV 7 18 OK 50m54s
GroverSingle-Comp 2 17 OK 5.2s GroverSingle-Comp 4 85 OK 51.7s
GroverAll-Comp 2 17 OK 6.8s GroverAll-Comp 4 85 OK 3m53s
GroverSingle-Iter 1 9 OK 3.2s GroverAll-Iter 1 9 OK 3.8s
GroverSingle-Iter 2 15 OK 4.9s GroverAll-Iter 2 15 OK 14.2s
GroverSingle-Iter 3 21 OK 8.4s GroverAll-Iter 3 21 OK 37.9s
GroverSingle-Iter 4 27 OK 17.1s GroverAll-Iter 4 27 OK 4m51s
GroverSingle-Iter 5 33 OK 46.9s GroverAll-Iter 5 33 OK 57m2s

only for non-linear variables. (ii) The restriction of the number of reads introduced us-
ing the rule read. In practice, only a few of the generated equations are actually needed to
ensure completeness. Instead of generating all possible reads eagerly, a procedure could
focus on the other rules first, and only introduce additional reads when it is detected
that default values are missing for some sub-arrays. We believe that other refinements
presented in [11] can be carried over to our decision procedure as well.

5 Preliminary Experimental Result

We have implemented the decision procedure proposed for CaAL, the encoding of
quantum gates using array operations, and of complex numbers as five-tuples of integers
in the SMT solver Princess [26]. The implementation is still a proof of concept and
largely unoptimized, so that the results reported in this section should be considered
preliminary. We evaluate the performance of CaAL based on a set of benchmarks for
quantum circuit verification. All experiments were conducted on a server with an AMD
EPYC 7742 64-core processor (1.5 GHz), 1,152 GiB of RAM, and a 1 TB SSD running
Ubuntu 20.04.5 LTS but were run with only one core for the sake of fairness. Files to
reproduce the experiment can be found in https://zenodo.org/record/7970588.
The experimental results are shown in Table 5. Specifically, we tested four different
verification problems with different circuit sizes.

– H2: Two consecutive H gates equal to identity.
– BV: The (complex) amplitudes of the output quantum state from a Bernstein-

Vazirani’s [4] circuit have no imaginary parts.
– GroverXXX-Comp: The Grover’s [17] circuit has a probability of 90% to find the

correct answer.
– GroverXXX-Iter: Each Grover iteration [17] increases the possibility of finding the

correct answer.

https://zenodo.org/record/7970588

16 Yu-Fang Chen, Philipp Rümmer(�), and Wei-Lun Tsai

For Grover’s algorithm, XXX=Single means we check the correctness of the circuit
against a specific oracle, and XXX=All means we check against all possible oracles. We
manually injected two bugs (by altering one gate) into two examples to demonstrate bug-
catching capability. With a timeout of 60min, our implementation can analyze circuits
with at most 7 qubits and at most 85 gates, which are still relatively small circuits.
Analyzing the results, we discovered that, in particular, the H gates used to create a
superposition state at the beginning of a circuit are challenging for the array decision
procedure, as they lead to an exponential number of array reads being created.

6 Conclusions

We have presented CaAL, an expressive logic of extensional arrays, with operations
for reading and storing values, creating constant arrays, a point-wise extension of func-
tions on array values to arrays, projection of arrays, and updating array slices. We
have established that checking the satisfiability of quantifier-free CaAL formulas is
NEXPTIME-complete, for a base theory in NP and non-nested arrays. The root cause
for the complexity of CaAL (as opposed to the NP complexity of CAL and the standard
theory of arrays) is that formulas can be constructed in which a cell in one array has de-
pendencies to an exponential number of cells in another array. In our decision procedure,
such situations lead to an exponential number of reads generated during propagation.
High degrees of dependency are typical, however, for quantum circuits.

We believe that CaAL is a suitable framework for reasoning about quantum circuits.
Due to the expressiveness of the logic, the encoding of quantum gates becomes re-
markably succinct and elegant (Table 3), and easily understandable both for researchers
in quantum circuit verification and people in automated reasoning. While theoretically
optimal, we consider the decision procedure proposed for CaAL only as a first step:
the high complexity of CaAL implies that brute-force approaches like saturation are
unlikely to scale to interesting instances. As future work, we therefore plan to explore
the use of abstraction methods and of more succinct array representations in the deci-
sion procedure, thus making it possible to exploit the highly structured nature of typical
quantum circuits in the solving process. We also plan to investigate whether interesting
fragments of CaAL with lower complexity can be identified.

Acknowledgements. This work has been partially funded by the Swedish Research
Council (VR) under grant 2018-04727, the Swedish Foundation for Strategic Research
(SSF) under the project WebSec (Ref. RIT17-0011), the Wallenberg project UPDATE,
and the NSTC QC project under Grant no. NSTC 111-2119-M-001-004- and 112-2119-
M-001-006-.

A Theory of Cartesian Arrays 17

References

1. Amy, M.: Towards large-scale functional verification of universal quantum circuits. In: Quan-
tum Physics and Logic (2018)

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech. rep., Depart-
ment of Computer Science, The University of Iowa (2017), available at www.SMT-LIB.org

3. Bauer-Marquart, F., Leue, S., Schilling, C.: symqv: Automated symbolic verification of
quantum programs. In: 25th International Symposium on Formal Methods. Springer (2023)

4. Bernstein, E., Vazirani, U.V.: Quantum complexity theory. In: Kosaraju, S.R., Johnson, D.S.,
Aggarwal, A. (eds.) Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory
of Computing, May 16-18, 1993, San Diego, CA, USA. pp. 11–20. ACM (1993). https:
//doi.org/10.1145/167088.167097, https://doi.org/10.1145/167088.167097

5. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: CDSAT for nondisjoint theories with
shared predicates: Arrays with abstract length. In: Déharbe, D., Hyvärinen, A.E.J. (eds.)
Proceedings of the 20th Internal Workshop on Satisfiability Modulo Theories co-located
with the 11th International Joint Conference on Automated Reasoning (ĲCAR 2022) part of
the 8th Federated Logic Conference (FLoC 2022), Haifa, Israel, August 11-12, 2022. CEUR
Workshop Proceedings, vol. 3185, pp. 18–37. CEUR-WS.org (2022), https://ceur-ws.
org/Vol-3185/paper9712.pdf

6. Brummayer, R., Biere, A.: Lemmas on demand for the extensional theory of arrays. J.
Satisf. Boolean Model. Comput. 6(1-3), 165–201 (2009). https://doi.org/10.3233/
sat190067, https://doi.org/10.3233/sat190067

7. Chen, Y., Chung, K., Lengál, O., Lin, J., Tsai, W., Yen, D.: An automata-based framework
for verification and bug hunting in quantum circuits (2023). https://doi.org/10.48550/
arxiv.2301.07747, https://arxiv.org/abs/2301.07747, to appear at PLDI 2023

8. Christ, J., Hoenicke, J.: Weakly equivalent arrays. In: Lutz, C., Ranise, S. (eds.) Frontiers
of Combining Systems - 10th International Symposium, FroCoS 2015, Wroclaw, Poland,
September 21-24, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9322, pp. 119–
134. Springer (2015). https://doi.org/10.1007/978-3-319-24246-0_8, https://
doi.org/10.1007/978-3-319-24246-0_8

9. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics 13(4), 043016 (apr 2011). https://doi.
org/10.1088/1367-2630/13/4/043016, https://doi.org/10.1088%2F1367-2630%
2F13%2F4%2F043016

10. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. arXiv preprint quant-
ph/0505030 (2005)

11. De Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In: 2009 Formal
Methods in Computer-Aided Design. pp. 45–52. IEEE (2009)

12. Falke, S., Merz, F., Sinz, C.: Extending the theory of arrays: memset, memcpy, and beyond.
In: Cohen, E., Rybalchenko, A. (eds.) Verified Software: Theories, Tools, Experiments - 5th
International Conference, VSTTE 2013, Menlo Park, CA, USA, May 17-19, 2013, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 8164, pp. 108–128. Springer
(2013). https://doi.org/10.1007/978-3-642-54108-7_6, https://doi.org/10.
1007/978-3-642-54108-7_6

13. Feng, Y., Yu, N., Ying, M.: Model checking quantum Markov chains. J. Comput. Syst. Sci.
79(7), 1181–1198 (2013). https://doi.org/10.1016/j.jcss.2013.04.002, https:
//doi.org/10.1016/j.jcss.2013.04.002

14. Fitting, M.C.: First-Order Logic and Automated Theorem Proving. Springer-Verlag, New
York, 2nd edn. (1996)

https://doi.org/10.1145/167088.167097
https://doi.org/10.1145/167088.167097
https://doi.org/10.1145/167088.167097
https://doi.org/10.1145/167088.167097
https://doi.org/10.1145/167088.167097
https://ceur-ws.org/Vol-3185/paper9712.pdf
https://ceur-ws.org/Vol-3185/paper9712.pdf
https://doi.org/10.3233/sat190067
https://doi.org/10.3233/sat190067
https://doi.org/10.3233/sat190067
https://doi.org/10.3233/sat190067
https://doi.org/10.3233/sat190067
https://doi.org/10.48550/arxiv.2301.07747
https://doi.org/10.48550/arxiv.2301.07747
https://doi.org/10.48550/arxiv.2301.07747
https://doi.org/10.48550/arxiv.2301.07747
https://arxiv.org/abs/2301.07747
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088%2F1367-2630%2F13%2F4%2F043016
https://doi.org/10.1088%2F1367-2630%2F13%2F4%2F043016
https://doi.org/10.1007/978-3-642-54108-7_6
https://doi.org/10.1007/978-3-642-54108-7_6
https://doi.org/10.1007/978-3-642-54108-7_6
https://doi.org/10.1007/978-3-642-54108-7_6
https://doi.org/10.1016/j.jcss.2013.04.002
https://doi.org/10.1016/j.jcss.2013.04.002
https://doi.org/10.1016/j.jcss.2013.04.002
https://doi.org/10.1016/j.jcss.2013.04.002

18 Yu-Fang Chen, Philipp Rümmer(�), and Wei-Lun Tsai

15. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Computer Aided
Verification: 19th International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007.
Proceedings 19. pp. 519–531. Springer (2007)

16. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm, W., Her-
manns, H. (eds.) Computer Aided Verification, 19th International Conference, CAV 2007,
Berlin, Germany, July 3-7, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4590,
pp. 519–531. Springer (2007). https://doi.org/10.1007/978-3-540-73368-3_52,
https://doi.org/10.1007/978-3-540-73368-3_52

17. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller, G.L. (ed.)
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, USA, May 22-24, 1996. pp. 212–219. ACM (1996). https:
//doi.org/10.1145/237814.237866, https://doi.org/10.1145/237814.237866

18. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University
Press (2009)

19. Hietala, K., Rand, R., Hung, S.H., Wu, X., Hicks, M.: Verified optimization in a quantum
intermediate representation. arXiv preprint arXiv:1904.06319 (2019)

20. Hoenicke, J., Schindler, T.: Solving and interpolating constant arrays based on weak equiv-
alences. In: Enea, C., Piskac, R. (eds.) Verification, Model Checking, and Abstract In-
terpretation - 20th International Conference, VMCAI 2019, Cascais, Portugal, January
13-15, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11388, pp. 297–
317. Springer (2019). https://doi.org/10.1007/978-3-030-11245-5_14, https:
//doi.org/10.1007/978-3-030-11245-5_14

21. Mateus, P., Ramos, J., Sernadas, A., Sernadas, C.: Temporal Logics for Reasoning about
Quantum Systems, p. 389–413. Cambridge University Press (2009). https://doi.org/
10.1017/CBO9781139193313.011

22. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th An-
niversary Edition. Cambridge University Press, USA, 10th edn. (2011)

23. Papadimitriou, C.H., Yannakakis, M.: A note on succinct representations of graphs. Informa-
tion and control 71(3), 181–185 (1986)

24. Perdrix, S.: Quantum entanglement analysis based on abstract interpretation. In: International
Static Analysis Symposium. pp. 270–282. Springer (2008)

25. Raya, R., Kuncak, V.: NP satisfiability for arrays as powers. In: Finkbeiner, B., Wies, T. (eds.)
Verification, Model Checking, and Abstract Interpretation - 23rd International Conference,
VMCAI 2022, Philadelphia, PA, USA, January 16-18, 2022, Proceedings. Lecture Notes in
Computer Science, vol. 13182, pp. 301–318. Springer (2022).https://doi.org/10.1007/
978-3-030-94583-1_15, https://doi.org/10.1007/978-3-030-94583-1_15

26. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arith-
metic. In: Proceedings, 15th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning. LNCS, vol. 5330, pp. 274–289. Springer (2008)

27. Sheng, Y., Nötzli, A., Reynolds, A., Zohar, Y., Dill, D.L., Grieskamp, W., Park, J., Qadeer,
S., Barrett, C.W., Tinelli, C.: Reasoning about vectors using an SMT theory of sequences.
In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) Automated Reasoning - 11th International
Joint Conference, ĲCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings. Lecture Notes
in Computer Science, vol. 13385, pp. 125–143. Springer (2022). https://doi.org/10.
1007/978-3-031-10769-6_9, https://doi.org/10.1007/978-3-031-10769-6_9

28. Sipser, M.: Introduction to the theory of computation. ACM Sigact News 27(1), 27–29 (1996)
29. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.: A decision procedure for an extensional theory

of arrays. In: Proceedings 16th Annual IEEE Symposium on Logic in Computer Science. pp.
29–37. IEEE (2001)

https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-030-11245-5_14
https://doi.org/10.1007/978-3-030-11245-5_14
https://doi.org/10.1007/978-3-030-11245-5_14
https://doi.org/10.1007/978-3-030-11245-5_14
https://doi.org/10.1017/CBO9781139193313.011
https://doi.org/10.1017/CBO9781139193313.011
https://doi.org/10.1017/CBO9781139193313.011
https://doi.org/10.1017/CBO9781139193313.011
https://doi.org/10.1007/978-3-030-94583-1_15
https://doi.org/10.1007/978-3-030-94583-1_15
https://doi.org/10.1007/978-3-030-94583-1_15
https://doi.org/10.1007/978-3-030-94583-1_15
https://doi.org/10.1007/978-3-030-94583-1_15
https://doi.org/10.1007/978-3-031-10769-6_9
https://doi.org/10.1007/978-3-031-10769-6_9
https://doi.org/10.1007/978-3-031-10769-6_9
https://doi.org/10.1007/978-3-031-10769-6_9
https://doi.org/10.1007/978-3-031-10769-6_9

A Theory of Cartesian Arrays 19

30. Tsai, Y., Jiang, J.R., Jhang, C.: Bit-slicing the Hilbert space: Scaling up accurate
quantum circuit simulation. In: 58th ACM/IEEE Design Automation Conference, DAC
2021, San Francisco, CA, USA, December 5-9, 2021. pp. 439–444. IEEE (2021).
https://doi.org/10.1109/DAC18074.2021.9586191, https://doi.org/10.1109/
DAC18074.2021.9586191

31. Wang, Q., Appel, A.W.: A solver for arrays with concatenation. J. Autom. Reason. 67(1),
4 (2023). https://doi.org/10.1007/s10817-022-09654-y, https://doi.org/10.
1007/s10817-022-09654-y

32. Xu, M., Fu, J., Mei, J., Deng, Y.: Model checking QCTL plus on quantum Markov chains.
Theor. Comput. Sci. 913, 43–72 (2022). https://doi.org/10.1016/j.tcs.2022.01.
044, https://doi.org/10.1016/j.tcs.2022.01.044

33. Xu, M., Li, Z., Padon, O., Lin, S., Pointing, J., Hirth, A., Ma, H., Palsberg, J., Aiken, A., Acar,
U.A., et al.: Quartz: superoptimization of quantum circuits. In: Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design and Implementation.
pp. 625–640 (2022)

34. Yu, N., Palsberg, J.: Quantum abstract interpretation. In: Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation.
pp. 542–558 (2021)

35. Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 38(5), 848–859 (2019). https://doi.org/10.1109/
TCAD.2018.2834427, https://doi.org/10.1109/TCAD.2018.2834427

https://doi.org/10.1109/DAC18074.2021.9586191
https://doi.org/10.1109/DAC18074.2021.9586191
https://doi.org/10.1109/DAC18074.2021.9586191
https://doi.org/10.1109/DAC18074.2021.9586191
https://doi.org/10.1007/s10817-022-09654-y
https://doi.org/10.1007/s10817-022-09654-y
https://doi.org/10.1007/s10817-022-09654-y
https://doi.org/10.1007/s10817-022-09654-y
https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427

	A Theory of Cartesian Arrays [0.5ex] (with Applications in Quantum Circuit Verification)

