Effectively Propositional Interpolants

Samuel Drews and Aws Albarghouthi

WISCONSIN

Effectively Propositional Logic (EPR)

 $\exists x_1 \dots x_n \, \forall y_1 \dots y_m \, \varphi$

Decidable satisfiability

Quantifier-free No function symbols

• Expressive; can encode linked lists

Models and Diagrams $\varphi = \exists a \forall b. \ p(a,b)$

Model $m\models \varphi$

 c_1

Diagram

$$diag(m) = \exists c_1, c_2.c_1 \neq c_2$$

$$\land p(c_1, c_1) \land \neg p(c_2, c_2)$$

$$\land p(c_1, c_2) \land \neg p(c_2, c_1)$$

UITP Soundness

 Returning *I*: interpolant by construction
 Returning *none* is sound: *diag(m)* is the strongest ∃ -logic formula *m* models

> > R

diag(m)

UITP Termination (and Completeness)

EPR small model property: All EPR *A* have a bound *k* such that $m \models A \rightarrow \exists m'. m' \models A \land m' \subseteq m \land |m'| \leq k$

So $m \models diag(m')$

```
A \to \bigvee_{m \models A: |m| \le k} diag(m)
```


BITP: for AF-logic

UITP(A, B):BIT $I \leftarrow False$ $I \leftarrow$ while $A \land \neg I$ is satwh $m \models A \land \neg I$ if $diag(m) \land B$ is satreturn none $I \leftarrow I \lor diag(m)$ return Iret

BITP(A, B): $I \leftarrow False$ while $A \land \neg I$ is sat $m \models A \land \neg I, d \leftarrow diag(m)$ if $d \land B$ is sat $d \leftarrow d \land \neg BITP(B \land d, A \land d)$ $I \leftarrow I \lor d$ return I

BITP Soundness and Relative Completeness

Soundness: returned *I* is interpolant by construction

Experiments

Implemented simple interpolation-based verifier, ITPV

Compared ITPV to PDR_{\forall} on 18 benchmarks Average time: PDR_{\forall} 3.9s, ITPV 8.9s

ITPV succeeded on benchmarks modified to require AF-logic

Questions?