Mailing List Archives
Authenticated access
|
|
|
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [HTCondor-users] GPUs not detected in 9.0.6 version
- Date: Thu, 30 Sep 2021 15:58:11 +0000
- From: "Anderson, Stuart B." <sba@xxxxxxxxxxx>
- Subject: Re: [HTCondor-users] GPUs not detected in 9.0.6 version
Carles,
In case it helps, here is what I see from "condor_gpu_discovery -verbose -diag" on an SL7 system with a single GTX 1050 Ti running condor 9.0.6, CUDA 11.2 and NVIDIA driver 460.32.03.
root@node1 config.d]# /usr/libexec/condor/condor_gpu_discovery -verbose -diag
diag: clearing environment before device enumeration
diag: using nvcuda for gpu discovery
# querying ordinal:0, dev:0x7ffc00000000 using cuDevice* API
# cuDeviceTotalMem(0) returns 0, value = 4236312576
# cuDeviceTotalMem(0x7ffc00000000) returns 0, value = 4236312576
# nvml_getBasicProps() for GPU-23b6505e-b534-990a-9ec9-f4dca5662ab0 returns 0
diag: skipping uuid=GPU-23b6505e-b534-990a-9ec9-f4dca5662ab0 during nvml enumeration because it matches CUDA0
DetectedGPUs="GPU-23b6505e"
Looks like the call to nvml_getBasicProps() is new in 9.0.6. I don't know if will help, but it might also be worth comparing the output of compiling and running /usr/local/cuda/samples/1_Utilities/deviceQuery to see if there are different BasicProps being returned that Condor is chocking on. Here is what I see,
[root@node1 deviceQuery]# ./deviceQuery
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX 1050 Ti"
CUDA Driver Version / Runtime Version 11.2 / 11.2
CUDA Capability Major/Minor version number: 6.1
Total amount of global memory: 4040 MBytes (4236312576 bytes)
( 6) Multiprocessors, (128) CUDA Cores/MP: 768 CUDA Cores
GPU Max Clock rate: 1392 MHz (1.39 GHz)
Memory Clock rate: 3504 Mhz
Memory Bus Width: 128-bit
L2 Cache Size: 1048576 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total shared memory per multiprocessor: 98304 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device supports Managed Memory: Yes
Device supports Compute Preemption: Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 7 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.2, CUDA Runtime Version = 11.2, NumDevs = 1
Result = PASS
Thanks.
> On Sep 29, 2021, at 10:07 PM, Carles Acosta <cacosta@xxxxxx> wrote:
>
> Hi TJ,
>
> Here you have the results:
>
> # /usr/libexec/condor/condor_gpu_discovery-9.0.6 -verbose -diag
> diag: clearing environment before device enumeration
> diag: using nvcuda for gpu discovery
> # querying ordinal:0, dev:0x833117100000000 using cuDevice* API
> # cuDeviceTotalMem(0) returns 0, value = 4236312576
> # cuDeviceTotalMem(0x833117100000000) returns 0, value = 4236312576
> # nvml_getBasicProps() for GPU-c659279d-ce12-c3b9-f9c4-05a68df7c711 returns 0
> Segmentation fault
>
> On the other hand, using the 9.0.5 version:
>
> # /usr/libexec/condor/condor_gpu_discovery-9.0.5 -verbose -diag
> diag: using nvcuda for gpu discovery
> # querying ordinal:0, dev:0xa2f81b3c00000000 using cuDevice* API
> # cuDeviceTotalMem(0) returns 0, value = 4236312576
> # cuDeviceTotalMem(0xa2f81b3c00000000) returns 0, value = 4236312576
> DetectedGPUs="GPU-c659279d"
>
--
Stuart Anderson
sba@xxxxxxxxxxx